

使用Hansel iQuad 2300 ICP-MS 对化妆品中铅 砷汞镉4种元素进行分 析

作者 李孟婷 衡昇质谱(北京)仪器有限公司

使用 KED 模式对化妆品中铅砷汞镉 4 种元素定量分析

前言

化妆品是人们日常生活中广泛使用的产品,其质量和 安全性直接影响消费者的健康。随着对化妆品安全性 的关注不断提高,重金属污染已成为行业监管和消费 者关注的焦点。金属元素可能来源于原材料、生产工 艺或包装材料,一旦超标,可能对人体健康造成危害。 某些金属元素,如铅(Pb)、汞(Hg)、镉(Cd) 和砷(As),在超标情况下可能对人体健康造成严 重危害。例如,铅可能引起神经系统损伤,汞会影响 肾脏和神经系统,镉具有致癌性,而砷可能导致皮肤 病变和癌症。长期接触这些有害金属会增加慢性中毒 的风险,特别是对于孕妇、婴幼儿和敏感人群而言, 危害更为严重。

因此、对化妆品中金属元素的检测至关重要。

全球多个国家和地区都对化妆品中的金属元素限量做出了规定。例如,欧盟《化妆品法规》(EC 1223/2009)严格限制重金属的含量,美国 FDA 也对某些化妆品中的铅含量进行了监管,中国《化妆品安

全技术规范》对多种有害金属元素进行了限制。

化妆品中金属元素的检测主要采用原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体发射光谱法(ICP-OES)等。原子吸收光谱法(AAS):适用于检测微量金属元素,如铅、镉等;电感耦合等离子体质谱法(ICP-MS):具有更高的灵敏度和准确度,能检测超痕量金属元素。通过科学检测和严格监管,可以最大程度地减少化妆品中的金属污染风险,让消费者能够安全、放心地使用各类美容产品。

本文参照《化妆品安全技术规范》,使用 iQuad 2300 对散粉和口红中铅、砷、汞、镉 4 种金属元素进行检测。

实验部分

样品和试剂

文中检测使用样品为客户提供的散粉、口红。参考 《化妆品安全技术规范》对样品进行消解和测试。

用硝酸(BV-III,化学试剂研究所生产)进行微波消解和标准品/样品前处理。使用 18.2 $M\Omega$ -cm (Millipore, Bedford, MA, USA) 去离子水 (DIW) 进行所有稀释。

标样

铅、砷、汞、镉、金、锗、铟和铋单元素标准溶液 (中科睿谱)。每组校准标样单独配制。

样品前处理

称取 0.3g~0.4g 的样品于微波消解罐中,加入 1ml 双氧水和 6ml 硝酸,混匀后按照表 1 的消解程序进行微波消解。消解结束后取出消解罐,冷却至室温后,转移至 50mL 离心管中,用 2%的硝酸定容至刻线,待测。

表 1. 微波消解程序

温度 (°C)	程序升温时间 (min)	保持时间 (min)	
120	0	2	
150	0	2	
170	0	2	
190	0	25	

应用简报编号: IQUAD2512CN

仪器

M6 微波消解仪(屹尧科技)

iQuad 2300 ICP-MS(衡昇质谱)

使用 ICP-MS 软件内的自动调谐功能对 ICP-MS 进行优化,优化完成后再将样品引入系统。所用仪器运行条件如表 2 所示。

参数 设置 雾化器 玻璃同心雾化器 雾室 玻璃旋流雾室 锥 镍锥 等离子气流量 14L/min 辅助气流量 0.8L/min RF功率 1500W 驻留时间 0.05s 重复测量次数 电子稀释倍数 0 测量模式 动能歧视模式(He碰撞模式)

表 2. 2300 ICP-MS 运行条件

结果与讨论

标准曲线

将 4 种元素的混合标准溶液用 2% 的硝酸稀释,为了确保汞的稳定性,添加最终浓度为 200μg/L 的金元素到汞标准曲线溶液中。

4 种元素的线性相关性良好,相关系数 R² 均大于 0.9998。表 3 统计了 13 种元素的测量范围和推荐使用的内标。

表 3. 标准曲线测量范围和内标

 測量元素
 測量范围
 内标

 As
 0~50 μg/L
 74Ge

 Cd
 0~50 μg/L
 115In

 Hg (含200μg/L Au)
 0~5 μg/L
 209Bi

 Pb
 0~50 μg/L
 209Bi

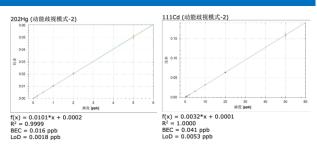


图 1.4 种元素的校准曲线

正确度和加标回收率

为验证 As、Hg、Pb、Cd 四种元素分析的可靠性,对这 4 种元素进行加标回收率测试。分别对样品进行低、中、高三种不同浓度的加标,计算每个元素的加标回收率,如表 5 和表 6 所列。各种浓度下所有元素的回收率均处于 85%–103% 范围内,表明重金属元素的分析结果可靠。

表 5. 散粉中重金属回收率实验结果(单位: μg/kg)

元素	75As	111Cd	202Hg	208Pb		
线性 R²	0.9998	0.9999	0.9999	0.9998		
散粉	0.829	0.131 3.549		0.120		
低浓度加标结果	2.69	1.11	8.32	0.616		
中浓度加标结果	4.78	4.78 2.23 13.5		1.12		
高浓度加标结果	8.62	4.03	22.9	2.08		
加标值 1	2.0	1 5		0.5		
加标值 2	4	2	10	1		
加标值 3	8	4 20		2		
加标回收率 1	93.0%	98.0%	95.5%	99.2%		
加标回收率 2	98.7%	104.9%	99.7%	99.6%		
加标回收率 3	97.3%	97.5%	96.7%	97.8%		

表 6. 口红中重金属回收率实验结果(单位: μg/kg)

7 ** A = 1 ** ** ** * * * * * * * * * * * * *							
元素	75As	111Cd	202Hg	208Pb			
线性 R ²	0.9998	0.9999	0.9999	0.9998			
口红	2.192	0.111	2.686	ND			
低浓度加标 结果	3.900	1.096	7.152	0.503			
中浓度加标 结果	5.985	2.103	12.201	1.010			
高浓度加标 结果	9.707	4.021	21.793	1.957			
加标值 1	2	1	5	0.5			
加标值 2	4	2	10	1			
加标值 3	8	4	20	2			
加标回收率 1	85.4%	98.5%	89.3%	101.0%			
加标回收率 2	94.8%	99.6%	95.2%	101.3%			
加标回收率 3	93.9%	97.8%	95.5%	98.0%			

应用简报编号: IQUAD2512CN

结论

iQUad 2300 凭借其独特的六级杆碰撞反应池,不仅 高灵敏度、低检测限和宽动态范围的优势,还能有效 去除大部分干扰离子, 为化妆品中痕量及超痕量金属 元素的准确定量提供了可靠的技术支撑。实验结果表 明,该方法能够有效克服化妆品复杂基体的干扰,同 时实现多元素(如铅、汞、砷、镉等)的高效同步检 测,检测结果精密度和加标回收率(85%-103%)均 符合国际标准要求。相较于传统原子吸收光谱法 (AAS) 或原子荧光光谱法(AFS), ICP-MS 在检测 效率与数据准确性方面展现出显著优越性, 尤其适用 于法规限量日趋严格背景下的化妆品质量安全控制。 通过该方法建立的标准检测流程, 不仅为生产企业优 化原料筛选与生产工艺提供了科学依据, 也为监管部 门强化市场监督、保障消费者健康权益奠定了技术基 础。未来,随着仪器自动化与联用技术的进一步发展, ICP-MS 在化妆品安全评价中的应用潜力将进一步提 升,推动行业向更精准化、透明化的方向迈进。

> www.hansel-inst.com 衡昇质谱(北京)仪器有限公司